Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting

[ad_1]

  • Skjærvø, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2020).

    Article 

    Google Scholar 

  • Wang, R. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    CAS 
    Article 

    Google Scholar 

  • Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

    CAS 
    Article 

    Google Scholar 

  • Ladak, S., Read, D., Perkins, G., Cohen, L. & Branford, W. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010).

    CAS 
    Article 

    Google Scholar 

  • Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7, 75–79 (2011).

    CAS 
    Article 

    Google Scholar 

  • Yu, H., Xiao, J. & Schultheiss, H. Magnetic texture based magnonics. Phys. Rep. 905, 1–59 (2021).

    CAS 
    Article 

    Google Scholar 

  • Sklenar, J. et al. Field-induced phase coexistence in an artificial spin ice. Nat. Phys. 15, 191–195 (2019).

    CAS 
    Article 

    Google Scholar 

  • Louis, D. et al. A tunable magnetic metamaterial based on the dipolar four-state Potts model. Nat. Mater. 17, 1076–1080 (2018).

    CAS 
    Article 

    Google Scholar 

  • Grundler, D. Reconfigurable magnonics heats up. Nat. Phys. 11, 438–441 (2015).

    CAS 
    Article 

    Google Scholar 

  • Chumak, A., Serga, A. & Hillebrands, B. Magnonic crystals for data processing. J. Phys. D 50, 244001 (2017).

    Article 
    CAS 

    Google Scholar 

  • Barman, A., Mondal, S., Sahoo, S. & De, A. Magnetization dynamics of nanoscale magnetic materials: a perspective. J. Appl. Phys. 128, 170901 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kaffash, M. T., Lendinez, S. & Jungfleisch, M. B. Nanomagnonics with artificial spin ice. Phys. Lett. A 402, 127364 (2021).

    CAS 
    Article 

    Google Scholar 

  • Barman, A. et al. The 2021 magnonics roadmap. J. Phys. Condens. Matter 33, 413001 (2021).

    CAS 
    Article 

    Google Scholar 

  • Papp, Á., Porod, W. & Csaba, G. Nanoscale neural network using non-linear spin-wave interference. Nat. Commun. 12, 6422 (2021).

    CAS 
    Article 

    Google Scholar 

  • Dion, T. et al. Observation and control of collective spin-wave mode-hybridisation in chevron arrays and square, staircase and brickwork artificial spin ices. Phys. Rev. Res. 4, 013107 (2022).

    CAS 
    Article 

    Google Scholar 

  • Arroo, D. M., Gartside, J. C. & Branford, W. R. Sculpting the spin-wave response of artificial spin ice via microstate selection. Phys. Rev. B 100, 214425 (2019).

    CAS 
    Article 

    Google Scholar 

  • Dion, T. et al. Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification. Phys. Rev. B 100, 054433 (2019).

    CAS 
    Article 

    Google Scholar 

  • Stenning, K. D. et al. Magnonic bending, phase shifting and interferometry in a 2D reconfigurable nanodisk crystal. ACS Nano 15, 674–685 (2020).

    Article 
    CAS 

    Google Scholar 

  • Vanstone, A. et al. Spectral-fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin systems. Preprint at https://arXiv.org/abs/2106.04406 (2021).

  • Chaurasiya, A. K. et al. Comparison of spin-wave modes in connected and disconnected artificial spin ice nanostructures using Brillouin light scattering spectroscopy. ACS Nano 15, 11734–11742 (2021).

    CAS 
    Article 

    Google Scholar 

  • Lendinez, S., Kaffash, M. T. & Jungfleisch, M. B. Emergent spin dynamics enabled by lattice interactions in a bicomponent artificial spin ice. Nano Lett. 21, 1921–1927 (2021).

    CAS 
    Article 

    Google Scholar 

  • Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2019).

    CAS 
    Article 

    Google Scholar 

  • Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).

    Article 

    Google Scholar 

  • Nakajima, K. Physical reservoir computing—an introductory perspective. Jpn. J. Appl. Phys. 59, 060501 (2020).

    CAS 
    Article 

    Google Scholar 

  • Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

    Article 
    CAS 

    Google Scholar 

  • Milano, G. et al. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 21, 195–202 (2022).

    CAS 
    Article 

    Google Scholar 

  • Chumak, A. et al. Roadmap on spin-wave computing. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2022.3149664 (2022).

  • Dawidek, R. W. et al. Dynamically driven emergence in a nanomagnetic system. Adv. Funct. Mater. 31, 2008389 (2021).

    CAS 
    Article 

    Google Scholar 

  • Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    CAS 
    Article 

    Google Scholar 

  • Nakane, R., Tanaka, G. & Hirose, A. Reservoir computing with spin waves excited in a garnet film. IEEE Access 6, 4462–4469 (2018).

    Article 

    Google Scholar 

  • Hon, K. et al. Numerical simulation of artificial spin ice for reservoir computing. Appl. Phys. Express 14, 033001 (2021).

    CAS 
    Article 

    Google Scholar 

  • Jensen, J. H., Folven, E. & Tufte, G. Computation in artificial spin ice. In ALIFE 2018: The 2018 Conference on Artificial Life, 15–22 (MIT Press, 2018).

  • Jensen, J. H. & Tufte, G. Reservoir computing in artificial spin ice. In ALIFE 2020: The 2020 Conference on Artificial Life, 376–383 (MIT Press, 2020).

  • Welbourne, A. et al. Voltage-controlled superparamagnetic ensembles for low-power reservoir computing. Appl. Phys. Lett. 118, 202402 (2021).

    CAS 
    Article 

    Google Scholar 

  • Yildiz, I. B., Jaeger, H. & Kiebel, S. J. Re-visiting the echo state property. Neural Netw. 35, 1–9 (2012).

    Article 

    Google Scholar 

  • Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

    Article 

    Google Scholar 

  • Gartside, J. C. et al. Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice. Nat. Commun. 12, 2488 (2021).

  • Metlov, K. L. & Guslienko, K. Y. Stability of magnetic vortex in soft magnetic nano-sized circular cylinder. J. Magn. Magn. Mater. 242, 1015–1017 (2002).

    Article 

    Google Scholar 

  • Guslienko, K. Y. Magnetic vortex state stability, reversal and dynamics in restricted geometries. J. Nanosci. Nanotechnol. 8, 2745–2760 (2008).

    CAS 
    Article 

    Google Scholar 

  • Talapatra, A., Singh, N. & Adeyeye, A. Magnetic tunability of permalloy artificial spin ice structures. Phys. Rev. Appl. 13, 014034 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gartside, J. C., Burn, D. M., Cohen, L. F. & Branford, W. R. A novel method for the injection and manipulation of magnetic charge states in nanostructures. Sci. Rep. 6, 32864 (2016).

    CAS 
    Article 

    Google Scholar 

  • Nisoli, C. et al. Ground state lost but degeneracy found: the effective thermodynamics of artificial spin ice. Phys. Rev. Lett. 98, 217203 (2007).

    Article 
    CAS 

    Google Scholar 

  • Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948).

    CAS 
    Article 

    Google Scholar 

  • Jungfleisch, M. et al. Dynamic response of an artificial square spin ice. Phys. Rev. B 93, 100401 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gartside, J. C. et al. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nat. Nanotechnol. 13, 53–58 (2018).

    CAS 
    Article 

    Google Scholar 

  • Wang, Y.-L. et al. Rewritable artificial magnetic charge ice. Science 352, 962–966 (2016).

    CAS 
    Article 

    Google Scholar 

  • Chou, K. et al. Direct observation of the vortex core magnetization and its dynamics. Appl. Phys. Lett. 90, 202505 (2007).

    Article 
    CAS 

    Google Scholar 

  • Barman, A., Barman, S., Kimura, T., Fukuma, Y. & Otani, Y. Gyration mode splitting in magnetostatically coupled magnetic vortices in an array. J. Phys. D 43, 422001 (2010).

    Article 
    CAS 

    Google Scholar 

  • Schultheiss, K. et al. Excitation of whispering gallery magnons in a magnetic vortex. Phys. Rev. Lett. 122, 097202 (2019).

    CAS 
    Article 

    Google Scholar 

  • Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks – with an erratum note (Fraunhofer Institute for Autonomous Intelligent Systems, 2010).

  • Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009).

    Article 

    Google Scholar 

  • Atiya, A. F. & Parlos, A. G. New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11, 697–709 (2000).

    CAS 
    Article 

    Google Scholar 

  • Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    CAS 
    Article 

    Google Scholar 

  • Burn, D., Chadha, M. & Branford, W. Dynamic dependence to domain wall propagation through artificial spin ice. Phys. Rev. B 95, 104417 (2017).

    Article 

    Google Scholar 

  • Pushp, A. et al. Domain wall trajectory determined by its fractional topological edge defects. Nat. Phys. 9, 505–511 (2013).

    CAS 
    Article 

    Google Scholar 

  • Gartside, J. C. et al. Current-controlled nanomagnetic writing for reconfigurable magnonic crystals. Commun. Phys. 3, 219 (2020).

    Article 

    Google Scholar 

  • Pancaldi, M., Leo, N. & Vavassori, P. Selective and fast plasmon-assisted photo-heating of nanomagnets. Nanoscale 11, 7656–7666 (2019).

    CAS 
    Article 

    Google Scholar 

  • Gypens, P., Leo, N., Menniti, M., Vavassori, P. & Leliaert, J. Thermoplasmonic nanomagnetic logic gates. Preprint at https://arXiv.org/abs/2110.14212 (2021).

  • Stenning, K. D. et al. Low power continuous-wave all-optical magnetic switching in ferromagnetic nanoarrays. Preprint at https://arXiv.org/abs/2112.00697 (2021).

  • Bhat, V. et al. Magnon modes of microstates and microwave-induced avalanche in kagome artificial spin ice with topological defects. Phys. Rev. Lett. 125, 117208 (2020).

    CAS 
    Article 

    Google Scholar 

  • Caravelli, F., Chern, G.-W. & Nisoli, C. Artificial spin ice phase-change memory resistors. New J. Phys. 24, 023020 (2022).

    Article 

    Google Scholar 

  • Caravelli, F., Iacocca, E., Chern, G.-W., Nisoli, C. & de Araujo, C. I. Anisotropic magnetomemristance. Preprint at https://arXiv.org/abs/2109.05101 (2021).

  • Vansteenkiste, A. & Van de Wiele, B. MuMax: a new high-performance micromagnetic simulation tool. J. Magn. Magn. Mater. 323, 2585–2591 (2011).

    CAS 
    Article 

    Google Scholar 

  • Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article 
    CAS 

    Google Scholar 

  • Stancil, D. D. & Prabhakar, A. Spin Waves 5 (Springer, 2009).

  • [ad_2]

    Source link

    Leave a Comment

    Your email address will not be published.

    %d bloggers like this: