[ad_1]
Skjærvø, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2020).
Google Scholar
Wang, R. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).
Google Scholar
Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).
Google Scholar
Ladak, S., Read, D., Perkins, G., Cohen, L. & Branford, W. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010).
Google Scholar
Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7, 75–79 (2011).
Google Scholar
Yu, H., Xiao, J. & Schultheiss, H. Magnetic texture based magnonics. Phys. Rep. 905, 1–59 (2021).
Google Scholar
Sklenar, J. et al. Field-induced phase coexistence in an artificial spin ice. Nat. Phys. 15, 191–195 (2019).
Google Scholar
Louis, D. et al. A tunable magnetic metamaterial based on the dipolar four-state Potts model. Nat. Mater. 17, 1076–1080 (2018).
Google Scholar
Grundler, D. Reconfigurable magnonics heats up. Nat. Phys. 11, 438–441 (2015).
Google Scholar
Chumak, A., Serga, A. & Hillebrands, B. Magnonic crystals for data processing. J. Phys. D 50, 244001 (2017).
Google Scholar
Barman, A., Mondal, S., Sahoo, S. & De, A. Magnetization dynamics of nanoscale magnetic materials: a perspective. J. Appl. Phys. 128, 170901 (2020).
Google Scholar
Kaffash, M. T., Lendinez, S. & Jungfleisch, M. B. Nanomagnonics with artificial spin ice. Phys. Lett. A 402, 127364 (2021).
Google Scholar
Barman, A. et al. The 2021 magnonics roadmap. J. Phys. Condens. Matter 33, 413001 (2021).
Google Scholar
Papp, Á., Porod, W. & Csaba, G. Nanoscale neural network using non-linear spin-wave interference. Nat. Commun. 12, 6422 (2021).
Google Scholar
Dion, T. et al. Observation and control of collective spin-wave mode-hybridisation in chevron arrays and square, staircase and brickwork artificial spin ices. Phys. Rev. Res. 4, 013107 (2022).
Google Scholar
Arroo, D. M., Gartside, J. C. & Branford, W. R. Sculpting the spin-wave response of artificial spin ice via microstate selection. Phys. Rev. B 100, 214425 (2019).
Google Scholar
Dion, T. et al. Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification. Phys. Rev. B 100, 054433 (2019).
Google Scholar
Stenning, K. D. et al. Magnonic bending, phase shifting and interferometry in a 2D reconfigurable nanodisk crystal. ACS Nano 15, 674–685 (2020).
Google Scholar
Vanstone, A. et al. Spectral-fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin systems. Preprint at https://arXiv.org/abs/2106.04406 (2021).
Chaurasiya, A. K. et al. Comparison of spin-wave modes in connected and disconnected artificial spin ice nanostructures using Brillouin light scattering spectroscopy. ACS Nano 15, 11734–11742 (2021).
Google Scholar
Lendinez, S., Kaffash, M. T. & Jungfleisch, M. B. Emergent spin dynamics enabled by lattice interactions in a bicomponent artificial spin ice. Nano Lett. 21, 1921–1927 (2021).
Google Scholar
Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2019).
Google Scholar
Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).
Google Scholar
Nakajima, K. Physical reservoir computing—an introductory perspective. Jpn. J. Appl. Phys. 59, 060501 (2020).
Google Scholar
Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).
Google Scholar
Milano, G. et al. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 21, 195–202 (2022).
Google Scholar
Chumak, A. et al. Roadmap on spin-wave computing. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2022.3149664 (2022).
Dawidek, R. W. et al. Dynamically driven emergence in a nanomagnetic system. Adv. Funct. Mater. 31, 2008389 (2021).
Google Scholar
Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).
Google Scholar
Nakane, R., Tanaka, G. & Hirose, A. Reservoir computing with spin waves excited in a garnet film. IEEE Access 6, 4462–4469 (2018).
Google Scholar
Hon, K. et al. Numerical simulation of artificial spin ice for reservoir computing. Appl. Phys. Express 14, 033001 (2021).
Google Scholar
Jensen, J. H., Folven, E. & Tufte, G. Computation in artificial spin ice. In ALIFE 2018: The 2018 Conference on Artificial Life, 15–22 (MIT Press, 2018).
Jensen, J. H. & Tufte, G. Reservoir computing in artificial spin ice. In ALIFE 2020: The 2020 Conference on Artificial Life, 376–383 (MIT Press, 2020).
Welbourne, A. et al. Voltage-controlled superparamagnetic ensembles for low-power reservoir computing. Appl. Phys. Lett. 118, 202402 (2021).
Google Scholar
Yildiz, I. B., Jaeger, H. & Kiebel, S. J. Re-visiting the echo state property. Neural Netw. 35, 1–9 (2012).
Google Scholar
Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).
Google Scholar
Gartside, J. C. et al. Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice. Nat. Commun. 12, 2488 (2021).
Metlov, K. L. & Guslienko, K. Y. Stability of magnetic vortex in soft magnetic nano-sized circular cylinder. J. Magn. Magn. Mater. 242, 1015–1017 (2002).
Google Scholar
Guslienko, K. Y. Magnetic vortex state stability, reversal and dynamics in restricted geometries. J. Nanosci. Nanotechnol. 8, 2745–2760 (2008).
Google Scholar
Talapatra, A., Singh, N. & Adeyeye, A. Magnetic tunability of permalloy artificial spin ice structures. Phys. Rev. Appl. 13, 014034 (2020).
Google Scholar
Gartside, J. C., Burn, D. M., Cohen, L. F. & Branford, W. R. A novel method for the injection and manipulation of magnetic charge states in nanostructures. Sci. Rep. 6, 32864 (2016).
Google Scholar
Nisoli, C. et al. Ground state lost but degeneracy found: the effective thermodynamics of artificial spin ice. Phys. Rev. Lett. 98, 217203 (2007).
Google Scholar
Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948).
Google Scholar
Jungfleisch, M. et al. Dynamic response of an artificial square spin ice. Phys. Rev. B 93, 100401 (2016).
Google Scholar
Gartside, J. C. et al. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nat. Nanotechnol. 13, 53–58 (2018).
Google Scholar
Wang, Y.-L. et al. Rewritable artificial magnetic charge ice. Science 352, 962–966 (2016).
Google Scholar
Chou, K. et al. Direct observation of the vortex core magnetization and its dynamics. Appl. Phys. Lett. 90, 202505 (2007).
Google Scholar
Barman, A., Barman, S., Kimura, T., Fukuma, Y. & Otani, Y. Gyration mode splitting in magnetostatically coupled magnetic vortices in an array. J. Phys. D 43, 422001 (2010).
Google Scholar
Schultheiss, K. et al. Excitation of whispering gallery magnons in a magnetic vortex. Phys. Rev. Lett. 122, 097202 (2019).
Google Scholar
Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks – with an erratum note (Fraunhofer Institute for Autonomous Intelligent Systems, 2010).
Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009).
Google Scholar
Atiya, A. F. & Parlos, A. G. New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11, 697–709 (2000).
Google Scholar
Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).
Google Scholar
Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).
Google Scholar
Burn, D., Chadha, M. & Branford, W. Dynamic dependence to domain wall propagation through artificial spin ice. Phys. Rev. B 95, 104417 (2017).
Google Scholar
Pushp, A. et al. Domain wall trajectory determined by its fractional topological edge defects. Nat. Phys. 9, 505–511 (2013).
Google Scholar
Gartside, J. C. et al. Current-controlled nanomagnetic writing for reconfigurable magnonic crystals. Commun. Phys. 3, 219 (2020).
Google Scholar
Pancaldi, M., Leo, N. & Vavassori, P. Selective and fast plasmon-assisted photo-heating of nanomagnets. Nanoscale 11, 7656–7666 (2019).
Google Scholar
Gypens, P., Leo, N., Menniti, M., Vavassori, P. & Leliaert, J. Thermoplasmonic nanomagnetic logic gates. Preprint at https://arXiv.org/abs/2110.14212 (2021).
Stenning, K. D. et al. Low power continuous-wave all-optical magnetic switching in ferromagnetic nanoarrays. Preprint at https://arXiv.org/abs/2112.00697 (2021).
Bhat, V. et al. Magnon modes of microstates and microwave-induced avalanche in kagome artificial spin ice with topological defects. Phys. Rev. Lett. 125, 117208 (2020).
Google Scholar
Caravelli, F., Chern, G.-W. & Nisoli, C. Artificial spin ice phase-change memory resistors. New J. Phys. 24, 023020 (2022).
Google Scholar
Caravelli, F., Iacocca, E., Chern, G.-W., Nisoli, C. & de Araujo, C. I. Anisotropic magnetomemristance. Preprint at https://arXiv.org/abs/2109.05101 (2021).
Vansteenkiste, A. & Van de Wiele, B. MuMax: a new high-performance micromagnetic simulation tool. J. Magn. Magn. Mater. 323, 2585–2591 (2011).
Google Scholar
Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).
Google Scholar
Stancil, D. D. & Prabhakar, A. Spin Waves 5 (Springer, 2009).
[ad_2]
Source link