[ad_1]
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
Google Scholar
Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Change 11, 656–664 (2021).
Google Scholar
Hashempour-Baltork, F., Khosravi-Darani, K., Hosseini, H., Farshi, P. & Reihani, S. F. S. Mycoproteins as safe meat substitutes. J. Clean. Prod. 253, 119958 (2020).
Google Scholar
Finnigan, T. J. A. et al. Mycoprotein: the future of nutritious nonmeat protein, a symposium review. Curr. Dev. Nutr. 3, nzz021 (2019).
Google Scholar
Stephens, N. et al. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 78, 155–166 (2018).
Google Scholar
Linder, T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Secur. 11, 265–278 (2019).
Google Scholar
Rubio, N. R., Xiang, N. & Kaplan, D. L. Plant-based and cell-based approaches to meat production. Nat. Commun. 11, 6276 (2020).
Google Scholar
Food and Agriculture Organization of the United Nations. Food and agricultural data. FAOSTAT https://www.fao.org/faostat (accessed 26 March 2021).
Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).
Google Scholar
Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).
Google Scholar
Steinfeld, H. & Gerber, P. Livestock production and the global environment: consume less or produce better? Proc. Natl Acad. Sci. USA 107, 18237–18238 (2010).
Google Scholar
Weindl, I. et al. Livestock and human use of land: productivity trends and dietary choices as drivers of future land and carbon dynamics. Glob. Planet. Change 159, 1–10 (2017).
Google Scholar
Heinke, J. et al. Water use in global livestock production—opportunities and constraints for increasing water productivity. Water Resour. Res. 56, e2019WR026995 (2020).
Google Scholar
Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).
Google Scholar
Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
Google Scholar
Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
Google Scholar
Sun, Z. et al. Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat. Food 3, 29–37 (2022).
Google Scholar
Fehér, A., Gazdecki, M., Véha, M., Szakály, M. & Szakály, Z. A comprehensive review of the benefits of and the barriers to the switch to a plant-based diet. Sustainability 12, 4136 (2020).
Google Scholar
Herrero, M. et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 1, 266–272 (2020).
Google Scholar
Stephens, N. & Ellis, M. Cellular agriculture in the UK: a review. Wellcome Open Res. 5, 12 (2020).
Google Scholar
Ciani, M. et al. Microbes: food for the future. Foods 10, 971 (2021).
Google Scholar
Sillman, J. et al. A life cycle environmental sustainability analysis of microbial protein production via power-to-food approaches. Int. J. Life Cycle Assess. 25, 2190–2203 (2020).
Google Scholar
Järviö, N., Maljanen, N.-L., Kobayashi, Y., Ryynänen, T. & Tuomisto, H. L. An attributional life cycle assessment of microbial protein production: a case study on using hydrogen-oxidizing bacteria. Sci. Total Environ. 776, 145764 (2021).
Google Scholar
Edwards, D. G. & Cummings, J. H. The protein quality of mycoprotein. Proc. Nutr. Soc. 69, E331 (2010).
Google Scholar
Souza Filho, P. F., Andersson, D., Ferreira, J. A. & Taherzadeh, M. J. Mycoprotein: environmental impact and health aspects. World J. Microbiol. Biotechnol. 35, 147 (2019).
Google Scholar
Smetana, S., Mathys, A., Knoch, A. & Heinz, V. Meat alternatives: life cycle assessment of most known meat substitutes. Int. J. Life Cycle Assess. 20, 1254–1267 (2015).
Google Scholar
Alexander, P. et al. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Glob. Food Sec. 15, 22–32 (2017).
Pikaar, I. et al. Decoupling livestock from land use through industrial feed production pathways. Environ. Sci. Technol. 52, 7351–7359 (2018).
Google Scholar
Lapeña, D. et al. Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. Microb. Cell Fact. 19, 19 (2020).
Google Scholar
Dietrich, J. P. et al. MAgPIE 4 – a modular open-source framework for modeling global land systems. Geosci. Model Dev. 12, 1299–1317 (2019).
Google Scholar
Dietrich, J. P. et al. MAgPIE – An Open Source Land-Use Modeling Framework, v.4.3.4. Zenodo https://doi.org/10.5281/zenodo.4730378 (2021).
Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D. Reconciling irrigated food production with environmental flows for sustainable development goals implementation. Nat. Commun. 8, 15900 (2017).
Google Scholar
Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Google Scholar
Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. 13, 024011 (2018).
Google Scholar
Mattick, C. S., Landis, A. E., Allenby, B. R. & Genovese, N. J. Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environ. Sci. Technol. 49, 11941–11949 (2015).
Google Scholar
Tuomisto, H. L. & Teixeira de Mattos, M. J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2011).
Google Scholar
Lynch, J. & Pierrehumbert, R. Climate impacts of cultured meat and beef cattle. Front. Sustain. Food Syst. 3, 5 (2019).
Google Scholar
Mendly-Zambo, Z., Powell, L. J. & Newman, L. L. Dairy 3.0: cellular agriculture and the future of milk. Food Cult. Soc. 24, 675–693 (2021).
Google Scholar
Järviö, N. et al. Ovalbumin production using Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin. Nat. Food 2, 1005–1013 (2021).
Google Scholar
Luderer, G. et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32–42 (2022).
Google Scholar
Herrero, M., Thornton, P. K., Gerber, P. & Reid, R. S. Livestock, livelihoods and the environment: understanding the trade-offs. Curr. Opin. Environ. Sustain. 1, 111–120 (2009).
Google Scholar
Jones, M., Gandia, A., John, S. & Bismarck, A. Leather-like material biofabrication using fungi. Nat. Sustain. 4, 9–16 (2021).
Google Scholar
Rogelj, J. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (IPCC, WMO, 2018).
Smith, P. et al. in Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019).
Lotze-Campen, H. et al. Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric. Econ. 39, 325–338 (2008).
Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).
Google Scholar
Müller, C. & Robertson, R. D. Projecting future crop productivity for global economic modeling. Agric. Econ. 45, 37–50 (2014).
Google Scholar
Dietrich, J. P., Popp, A. & Lotze-Campen, H. Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model. Ecol. Modell. 263, 233–243 (2013).
Google Scholar
Stevanović, M. et al. Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food prices. Environ. Sci. Technol. 51, 365–374 (2017).
Google Scholar
Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).
Google Scholar
Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).
Google Scholar
Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. Glob. Change Biol. Bioenergy 8, 11–24 (2014).
Google Scholar
Smil, V. Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins. Enzyme Microb. Technol. 30, 305–311 (2002).
Google Scholar
Shepon, A., Eshel, G., Noor, E. & Milo, R. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environ. Res. Lett. 11, 105002 (2016).
Google Scholar
Kc, S. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).
Google Scholar
Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Change 42, 200–214 (2017).
Google Scholar
The World Bank. World Development Indicators. https://databank.worldbank.org/source/world-development-indicators (accessed 19 March 2019).
James, S. L., Gubbins, P., Murray, C. J. & Gakidou, E. Developing a comprehensive time series of GDP per capita for 210 countries from 1950 to 2015. Popul. Health Metr. 10, 12 (2012).
Google Scholar
Bodirsky, B. L. et al. mrvalidation: madrat data preparation for validation purposes. Zenodo https://doi.org/10.5281/zenodo.4317827 (2020).
Bodirsky, B. L. et al. Global food demand scenarios for the 21st century. PLoS ONE 10, e0139201 (2015).
Google Scholar
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
Google Scholar
Wada, Y. et al. Global monthly water stress: 2. Water demand and severity of water stress. Water Resour. Res. 47, W07518 (2011).
Google Scholar
Wisser, D. et al. Global irrigation water demand: variability and uncertainties arising from agricultural and climate data sets. Geophys. Res. Lett. 35, L24408 (2008).
Google Scholar
Gasser, T. et al. Historical CO2 emissions from land-use and land-cover change and their uncertainty. Biogeosciences 17, 4075–4101 (2020).
Google Scholar
European Commission, Joint Research Centre/Netherlands Environmental Assessment Agency. EDGAR – Emissions Database for Global Atmospheric Research. https://edgar.jrc.ec.europa.eu (2011).
[ad_2]
Source link