Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history

[ad_1]

  • Boivin, N. L. et al. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Capizzi, D., Bertolino, S. & Mortelliti, A. Rating the rat: global patterns and research priorities in impacts and management of rodent pests. Mamm. Rev. 44, 148–162 (2014).

    Article 

    Google Scholar 

  • Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35, 221–270 (2009).

    PubMed 
    Article 

    Google Scholar 

  • McCormick, M. Rats, communications, and plague: toward an ecological history. J. Interdiscip. Hist. 34, 1–25 (2003).

    Article 

    Google Scholar 

  • Aplin, K. P., Brown, P., Jacob, J., Krebs, C. J. & Singleton, G. R. Field Methods for Rodent Studies in Asia and the Indo-Pacific (Australian Centre for International Agricultural Research, 2003).

  • Lack, J. B. et al. Invasion facilitates hybridization with introgression in the Rattus rattus species complex. Mol. Ecol. 21, 3545–3561 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Conroy, C. J. et al. Cryptic genetic diversity in Rattus of the San Francisco Bay region, California. Biol. Invasions 15, 741–758 (2013).

    Article 

    Google Scholar 

  • Robins, J. H., Hingston, M., Matisoo-Smith, E. & Ross, H. A. Identifying Rattus species using mitochondrial DNA. Mol. Ecol. Notes 7, 717–729 (2007).

    CAS 
    Article 

    Google Scholar 

  • Pagès, M. et al. Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evol. Biol. 10, 184 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Aplin, K. P. et al. Multiple geographic origins of commensalism and complex dispersal history of Black Rats. PLoS ONE 6, e26357 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Robins, J. H. et al. Dating of divergences within the Rattus genus phylogeny using whole mitochondrial genomes. Mol. Phylogenet. Evol. 49, 460–466 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yosida, T. H., Kato, H., Tsuchiya, K. & Moriwaki, K. Karyotypes and serum transferrin patterns of hybrids between Asian and Oceanian black rats, Rattus rattus. Chromosoma 34, 40–50 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hulme-Beaman, A., Dobney, K., Cucchi, T. & Searle, J. B. An ecological and evolutionary framework for commensalism in anthropogenic environments. Trends Ecol. Evol. 31, 633–645 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Jones, E. P., Eager, H. M., Gabriel, S. I., Jóhannesdóttir, F. & Searle, J. B. Genetic tracking of mice and other bioproxies to infer human history. Trends Genet. 29, 298–308 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Puckett, E. E., Orton, D. & Munshi-South, J. Commensal rats and humans: integrating rodent phylogeography and zooarchaeology to highlight connections between human societies. Bioessays 42, e1900160 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Jones, E. P. et al. Fellow travellers: a concordance of colonization patterns between mice and men in the North Atlantic region. BMC Evol. Biol. 12, 35 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cucchi, T. Uluburun shipwreck stowaway house mouse: molar shape analysis and indirect clues about the vessel’s last journey. J. Archaeol. Sci. 35, 2953–2959 (2008).

    Article 

    Google Scholar 

  • Cucchi, T. et al. On the trail of Neolithic mice and men towards Transcaucasia: zooarchaeological clues from Nakhchivan (Azerbaijan). Biol. J. Linn. Soc. Lond. 108, 917–928 (2013).

    Article 

    Google Scholar 

  • Cucchi, T. et al. Tracking the Near Eastern origins and European dispersal of the western house mouse. Sci. Rep. 10, 8276 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Matisoo-Smith, E. & Robins, J. H. Origins and dispersals of Pacific peoples: evidence from mtDNA phylogenies of the Pacific rat. Proc. Natl Acad. Sci. USA 101, 9167–9172 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Matisoo-Smith, E. & Robins, J. Mitochondrial DNA evidence for the spread of Pacific rats through Oceania. Biol. Invasions 11, 1521–1527 (2009).

    Article 

    Google Scholar 

  • West, K. et al. The Pacific Rat Race to Easter Island: tracking the prehistoric dispersal of Rattus exulans using ancient mitochondrial genomes. Front. Ecol. Evol. 5, 52 (2017).

    Article 

    Google Scholar 

  • Niethammer, V. J. Zur Taxonomie und Ausbreitungsgeschichte der Hausratte (Rattus rattus). Zool. Anz. Jena 194, 405–415 (1975).

    Google Scholar 

  • Baig, M., Khan, S., Eager, H., Atkulwar, A. & Searle, J. B. Phylogeography of the black rat Rattus rattus in India and the implications for its dispersal history in Eurasia. Biol. Invasions 21, 417–433 (2019).

    Article 

    Google Scholar 

  • Tchernov, E. Commensal animals and human sedentism in the Middle East. Anim. Archaeol. 3, 91–115 (1984).

    Google Scholar 

  • Ervynck, A. Sedentism or urbanism? On the origin of the commensal black rat (Rattus rattus). In Bones and the Man: Studies in Honour of Don Brothwell (eds Dobney, K. & O’Connor, T. P.) 95–109 (Oxbow, 2002).

  • Ruffino, L. & Vidal, E. Early colonization of Mediterranean islands by Rattus rattus: a review of zooarcheological data. Biol. Invasions 12, 2389–2394 (2010).

    Article 

    Google Scholar 

  • Vigne, J.-D. & Valladas, H. È. Small mammal fossil assemblages as indicators of environmental change in Northern Corsica during the last 2500 years. J. Archaeol. Sci. 23, 199–215 (1996).

    Article 

    Google Scholar 

  • Oueslati, T. et al. 1st century BCE occurrence of chicken, house mouse and black rat in Morocco: socio-economic changes around the reign of Juba II on the site of Rirha. J. Archaeol. Sci.: Rep. 29, 102162 (2020).

    Google Scholar 

  • Audoin-Rouzeau, F. & Vigne, J.-D. La colonisation de l’Europe par le rat noir (Rattus rattus). Rev. Paléobiol. 13, 125–145 (1994).

    Google Scholar 

  • Audoin-Rouzeau, F. & Vigne, E. T. J.-D. Le rat noir (Rattus rattus) en Europe Antique et mediévale: les voies du commerce et l’expansion de la peste. Anthropozoologica 25/26, 399–404 (1997).

    Google Scholar 

  • Armitage, P. L. Unwelcome companions: ancient rats reviewed. Antiquity 68, 231–240 (1994).

    Article 

    Google Scholar 

  • Hufthammer, A. K. & Walløe, L. Rats cannot have been intermediate hosts for Yersinia pestis during medieval plague epidemics in Northern Europe. J. Archaeol. Sci. 40, 1752–1759 (2013).

    Article 

    Google Scholar 

  • Dean, K. R. et al. Human ectoparasites and the spread of plague in Europe during the Second Pandemic. Proc. Natl Acad. Sci. USA 115, 1304–1309 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sloane, B. The Black Death in London (The History Press, 2011).

  • Hardy, A. The under-appreciated rodent: harbingers of plague from the middle ages to the twenty-first century. J. Interdiscip. Hist. 50, 171–185 (2019).

    Article 

    Google Scholar 

  • White, L. A. & Mordechai, L. Modeling the Justinianic Plague: comparing hypothesized transmission routes. PLoS One 15, e0231256 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • O’Connor, T. P. On the lack of bones of the ship rat Rattus rattus from Dark Age York. J. Zool. 224, 318–320 (1991).

    Article 

    Google Scholar 

  • Rielly, K. The black rat. In Extinctions and Invasions: a Social History of British fauna (eds O’Connor, T. & Sykes, N.) 134–145 (Oxbow, 2010).

  • Salvadori, F. The transition from late antiquity to early Middle Ages in Italy. A zooarchaeological perspective. Quat. Int. https://doi.org/10.1016/j.quaint.2018.06.040 (2018).

  • De Cupere, B. et al. Eagle owl (Bubo bubo) pellets from Roman Sagalassos (SW Turkey): distinguishing the prey remains from nest and roost sites. Int. J. Osteoarchaeol. 19, 1–22 (2009).

    Article 

    Google Scholar 

  • Parfitt, S. A. The small mammals. In The Transition To Late Antiquity on the Danube and Beyond (ed. Poulter, A. G.) 198–318 (Oxford University Press, 2007).

  • Davis, E. M. Paleoecological studies at Stobi. In Studies in the Antiquities of Stobi, Vol. 3 (eds Aleksova, B., Wiseman, J. & Mano-Zisi, Đ.) (Princetion University Press, 1981).

  • Baron, H., Reuter, A. E. & Marković, N. Rethinking ruralization in terms of resilience: subsistence strategies in sixth-century Caričin Grad in the light of plant and animal bone finds. Quat. Int. 499, 112–128 (2019).

    Article 

    Google Scholar 

  • Benedictow, O. J. What Disease was Plague?: On the Controversy Over the Microbiological Identity of Plague Epidemics of the Past (Brill, 2010).

  • O’Connor, T. P. Bones from Anglo-Scandinavian levels at 16–22 Coppergate. (Council for British Archaeology, 1989).

  • Pasda, K. Tierknochen als Spiegel sozialer Verhältnisse im 8.-15. Jh. in Bayern (Praehistoricaverlag, 2004).

  • Dobney, K., Jacques, D., Barrett, J. & Johnstone, C. Farmers, Monks and Aristocrats: the Environmental Archaeology of Anglo-Saxon Flixborough (Oxbow, 2007).

  • Reichstein, H. Die wildlebenden Säugetiere von Haithabu: Ausgrabungen 1966–1969 und 1979–1980. (Karl Wachholtz, 1991).

  • Wigh, B. Animal husbandry in the Viking Age town of Birka and its hinterland: excavations in the black earth 1990–95 (Riksantikvarieämbetet, 2001).

  • Tourunen, A. Animals in an Urban Context—A Zooarchaeological Study of the Medieval and Post-Medieval town of Turku (University of Turku, 2008).

  • Ervynck, A. Archeozoölogisch onderzoek van de zwarte rat (Rattus rattus) en de bruine rat (Rattus norvegicus) (Doctoral thesis, Amsterdam, 1989).

  • Barrett-Hamilton, G. & Hinton, M. A History of British Mammals (Gurney and Jackson, 1910).

  • Mitchell-Jones, A. J. et al. The Atlas of European Mammals (Poyser, 1999).

  • Savinetsky, A. B. & Krylovich, O. A. On the history of the spread of the black rat (Rattus rattus L., 1758) in northwestern Russia. Biol. Bull. Russ. Acad. Sci. 38, 203–207 (2011).

    Article 

    Google Scholar 

  • Ward-Perkins, B. The Fall of Rome and the End of Civilization (Oxford University Press, 2005).

  • Wickham, C. Framing the Early Middle Ages: Europe and the Mediterranean 400–800 (Oxford University Press, 2005).

  • Horden, P. & Purcell, N. The Corrupting Sea: A Study of Mediterranean History (Wiley-Blackwell, 2000).

  • Ambrosiani, B. Osten und Westen im Ostseehandel zur Wikingerzeit. In Haithabu und die frühe Stadtentwicklung im nördlichen Europa (eds Brandt, K., Müller-Wille, M. & Radtke, C.) 339–348 (Wachholtz, 2002).

  • Hodges, R. Dark Age Economics: A New Audit (Bloomsbury, 2012).

  • Keller, M. et al. Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750). Proc. Natl Acad. Sci. USA 116, 12363–12372 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wagner, D. M. et al. Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect. Dis. 14, 319–326 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Feldman, M. et al. A high-coverage Yersinia pestis genome from a sixth-Century Justinianic Plague victim. Mol. Biol. Evol. 33, 2911–2923 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Deinum, E. E. et al. Recent evolution in Rattus norvegicus is shaped by declining effective population size. Mol. Biol. Evol. 32, 2547–2558 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Colangelo, P. et al. Mitochondrial phylogeography of the black rat supports a single invasion of the western Mediterranean basin. Biol. Invasions 17, 1859–1868 (2015).

    Article 

    Google Scholar 

  • Etougbétché, J. et al. Genetic diversity and origins of invasive black rats (Rattus rattus) in Benin, West Africa. fozo 1 69, 20014.1 (2020).

    Google Scholar 

  • Hemamali, P. P. C. & Boyagoda, S. H. Historic black rat invasions into Sri Lanka lead to hybridization forming two sub-lineages in the Rattus rattus species complex. Ceylon J. Sci. 49, 433 (2020).

    Article 

    Google Scholar 

  • Carleton, G. G., Musserand, M. D. & Musser, G. G. Superfamily Muroidea. In Mammal Species of the World: A Taxonomic and Geographic Reference 3rd edn (eds Wilson, D. E. & Reeder, D. M.) 894–1531 (Johns Hopkins University Press, 2005).

  • Boivin, N. Proto-globalisation and biotic exchange in the old world. In Human Dispersal and Species Movement from Prehistory to the Present (eds Boivin, N., Crassard, R. & Petraglia, M.) 349–408 (Cambridge University Press, 2017).

  • Cooper, J. P. Egypt’s Nile-Red Sea canals: chronology, location, seasonality and function. In Red Sea IV: Connected Hinterlands (eds Blue, L., Cooper, J., Thomas, R. & Whitewright, J.) 195–210 (Archaeopress, 2009).

  • Prendergast, M. E. et al. Reconstructing Asian faunal introductions to eastern Africa from multi-proxy biomolecular and archaeological datasets. PLoS ONE 12, e0182565 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tollenaere, C. et al. Phylogeography of the introduced species Rattus rattus in the western Indian Ocean, with special emphasis on the colonization history of Madagascar. J. Biogeogr. 37, 398–410 (2010).

    Article 

    Google Scholar 

  • Cobb, M. The chronology of Roman Trade in the Indian Ocean from Augustus to early third century ce. J. Econ. Soc. Hist. Orient 58, 362–418 (2015).

    Article 

    Google Scholar 

  • Ewer, R. F. The biology and behaviour of a free-living population of black rats (Rattus rattus). Anim. Behav. Monogr. 4, 127–174 (1971).

    Article 

    Google Scholar 

  • Pocock, M. J. O., Hauffe, H. C. & Searle, J. B. Dispersal in house mice. Biol. J. Linn. Soc. Lond. 84, 565–583 (2005).

    Article 

    Google Scholar 

  • Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–236 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Perry, R. D. & Fetherston, J. D. Yersinia pestis-etiologic agent of plague. Clin. Microbiol. Rev. 10, 35–66 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Spyrou, M. A., Bos, K. I., Herbig, A. & Krause, J. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 20, 323–340 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fenwick, C. From Africa to Ifrīqiya: settlement and society in early Medieval North Africa (650–800). Al-Masāq 25, 9–33 (2013).

    Article 

    Google Scholar 

  • Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McCormick, M. Where do trading towns come from? Early medieval Venice and the northern emporia. Post-Rom. towns, trade Settl. Eur. Byzantium 1, 41–68 (2007).

    Google Scholar 

  • Smith, D. & Kenward, H. Roman grain pests in Britain: implications for grain supply and agricultural production. Britannia 42, 243–262 (2011).

    Article 

    Google Scholar 

  • Buffon, G.-L. L. C. de. Histoire Naturelle, Générale et Particuliére, avec la Description du Cabinet du Roi, Vol. 8 (L’Imprimerie Royale, 1760).

  • Smith, R. The Universal Directory for Taking Alive and Destroying Rats, and All Other Kinds of Four-footed and Winged Vermin, In a Method Hitherto Unattempted: Calculated for the Use of the Gentleman, the Farmer, and the Warrener (J. Walker, 1768).

  • Pennant, T. British Zoology (William Eyres, 1776).

  • Rutty, J. An Essay Towards a Natural History of the County of Dublin, Vol. 1 (W. Sleater, 1772).

  • O’Connor, T. Commensal species. In The Oxford Handbook of Animal Studies (ed. Kalof, L.) (Oxford University Press, 2017).

  • Walker, T., Sharpe, J. R. & Williams, H. Barn owls and black rats from a rural Roman Villa at Gatehampton, South Oxfordshire. Environ. Archaeol. 26, 487–496 (2021).

    Article 

    Google Scholar 

  • Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article 

    Google Scholar 

  • Reimer, P. J., Austin, W. E. N., Bard, E. & Bayliss, A. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    CAS 
    Article 

    Google Scholar 

  • Guiry, E. & Buckley, M. Urban rats have less variable, higher protein diets. Proc. R. Soc. B 285, 20181441 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dewar, G. & Pfeiffer, S. Approaches to estimating marine protein in human collagen for radiocarbon date calibration. Radiocarbon 52, 1611–1625 (2010).

    CAS 
    Article 

    Google Scholar 

  • Heaton, T. J. et al. Marine20—the marine Radiocarbon Age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    CAS 
    Article 

    Google Scholar 

  • Chapman, J. A. et al. Meraculous: de novo genome assembly with short paired-end reads. PLoS ONE 6, e23501 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org (2013–2015).

  • Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 5, 11184 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R. Technical note: improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105, 539–543 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Speller, C. F. et al. Ancient mitochondrial DNA analysis reveals complexity of indigenous North American Turkey domestication. Proc. Natl Acad. Sci. USA 107, 2807–2812 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130624 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. https://doi.org/10.1038/s41596-020-0338-0 (2020).

  • Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carøe, C. et al. Single‐tube library preparation for degraded DNA. Methods Ecol. Evol. 9, 410–419 (2018).

    Article 

    Google Scholar 

  • Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918–925 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Teng, H. et al. Population genomics reveals speciation and introgression between Brown Norway rats and their sibling species. Mol. Biol. Evol. 34, 2214–2228 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).

    Article 

    Google Scholar 

  • Li, H. Improving SNP discovery by base alignment quality. Bioinformatics 27, 1157–1158 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • [ad_2]

    Source link

    Leave a Comment

    Your email address will not be published.

    %d bloggers like this: