[ad_1]
Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2003).
Wen, X. G. Metallic non-Fermi-liquid fixed point in two and higher dimensions. Phys. Rev. B 42, 6623–6630 (1990).
Google Scholar
Emery, V. J., Fradkin, E., Kivelson, S. A. & Lubensky, T. C. Quantum theory of the smectic metal state in stripe phases. Phys. Rev. Lett. 85, 2160–2163 (2000).
Google Scholar
Sondhi, S. L. & Yang, K. Sliding phases via magnetic fields. Phys. Rev. B 63, 054430 (2001).
Google Scholar
Vishwanath, A. & Carpentier, D. Two-dimensional anisotropic non-Fermi-liquid phase of coupled Luttinger liquids. Phys. Rev. Lett. 86, 676–679 (2001).
Google Scholar
Mukhopadhyay, R., Kane, C. L. & Lubensky, T. C. Sliding Luttinger liquid phases. Phys. Rev. B 64, 045120 (2001).
Google Scholar
Kane, C. L., Mukhopadhyay, R. & Lubensky, T. C. Fractional quantum Hall effect in an array of quantum wires. Phys. Rev. Lett. 88, 036401 (2002).
Google Scholar
Teo, J. C. Y. & Kane, C. L. From Luttinger liquid to non-Abelian quantum Hall states. Phys. Rev. B 89, 085101 (2014).
Google Scholar
Tam, P. M. & Kane, C. L. Nondiagonal anisotropic quantum Hall states. Phys. Rev. B 103, 035142 (2021).
Google Scholar
Neupert, T., Chamon, C., Mudry, C. & Thomale, R. Wire deconstructionism of two-dimensional topological phases. Phys. Rev. B 90, 205101 (2014).
Google Scholar
Iadecola, T., Neupert, T., Chamon, C. & Mudry, C. Wire constructions of Abelian topological phases in three or more dimensions. Phys. Rev. B 93, 195136 (2016).
Google Scholar
Meng, T., Neupert, T., Greiter, M. & Thomale, R. Coupled-wire construction of chiral spin liquids. Phys. Rev. B 91, 241106 (2015).
Google Scholar
Patel, A. A. & Chowdhury, D. Two-dimensional spin liquids with Z2 topological order in an array of quantum wires. Phys. Rev. B 94, 195130 (2016).
Google Scholar
Kennes, D. M., Xian, L., Claassen, M. & Rubio, A. One-dimensional flat bands in twisted bilayer germanium selenide. Nat. Commun. 11, 1124 (2020).
Google Scholar
Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).
Google Scholar
Wang, P. et al. Landau quantization and highly mobile fermions in an insulator. Nature 589, 225–229 (2021).
Google Scholar
Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87–93 (2022).
Google Scholar
Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).
Google Scholar
Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999).
Google Scholar
Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).
Google Scholar
Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).
Google Scholar
Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).
Google Scholar
Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).
Google Scholar
Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).
Google Scholar
Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).
Google Scholar
Jung, J., Raoux, A., Qiao, Z. & MacDonald, A. H. Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Phys. Rev. B 89, 205414 (2014).
Google Scholar
Levitov, S. & Shytov, A. V. Semiclassical theory of the Coulomb anomaly. J. Exp. Theor. Phys. Lett. 66, 214–221 (1997).
Bartosch, L. & Kopietz, P. Zero bias anomaly in the density of states of low-dimensional metals. Eur. Phys. J. B 28, 29–36 (2002).
Google Scholar
Rodin, A. S. & Fogler, M. M. Apparent power-law behavior of conductance in disordered quasi-one-dimensional systems. Phys. Rev. Lett. 105, 106801 (2010).
Google Scholar
Ishii, H. et al. Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003).
Google Scholar
Deshpande, V. V., Bockrath, M., Glazman, L. I. & Yacoby, A. Electron liquids and solids in one dimension. Nature 464, 209–216 (2010).
Google Scholar
Auslaender, O. M. et al. Spin-charge separation and localization in one dimension. Science 308, 88–92 (2005).
Google Scholar
Sato, Y. et al. Strong electron-electron interactions of a Tomonaga-Luttinger liquid observed in InAs quantum wires. Phys. Rev. B 99, 155304 (2019).
Google Scholar
Glattli, D. C. In The Quantum Hall Effect: Poincaré Seminar 2004 (eds. Douçot, B. et al.) 163–197 (Birkhäuser, 2005); https://doi.org/10.1007/3-7643-7393-8_5.
Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).
Google Scholar
Stühler, R. et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 16, 47–51 (2020).
Biermann, S., Georges, A., Giamarchi, T. & Lichtenstein, A. In Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems (eds. Lerner, I. V et al.) 81–102 (Springer, 2002); https://doi.org/10.1007/978-94-010-0530-2_5.
Dudy, L., Aulbach, J., Wagner, T., Schäfer, J. & Claessen, R. One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces. J. Phys. Condens. Matter 29, 433001 (2017).
Google Scholar
Clarke, D. G., Strong, S. P. & Anderson, P. W. Incoherence of single particle hopping between Luttinger liquids. Phys. Rev. Lett. 72, 3218–3221 (1994).
Google Scholar
Georges, A., Giamarchi, T. & Sandler, N. Interchain conductivity of coupled Luttinger liquids and organic conductors. Phys. Rev. B 61, 16393–16396 (2000).
Google Scholar
Ali, M. N. et al. Correlation of crystal quality and extreme magnetoresistance of WTe2. Europhys. Lett. 110, 67002 (2015).
Google Scholar
Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).
Google Scholar
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Google Scholar
Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).
Google Scholar
Simon, S. H. Comment on “Evidence for an anisotropic state of two-dimensional electrons in high Landau levels”. Phys. Rev. Lett. 83, 4223–4223 (1999).
Google Scholar
Lopatin, A., Georges, A. & Giamarchi, T. Hall effect and interchain magneto-optical properties of coupled Luttinger liquids. Phys. Rev. B 63, 075109 (2001).
Google Scholar
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Google Scholar
van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Google Scholar
Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).
Google Scholar
Nam, N. N. T. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).
Google Scholar
[ad_2]
Source link