Early Solar System instability triggered by dispersal of the gaseous disk

[ad_1]

  • Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F. & Gomes, R. Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007).

    ADS 
    Article 

    Google Scholar 

  • Batygin, K., Brown, M. E. & Betts, H. Instability-driven dynamical evolution model of a primordially five-planet outer Solar System. Astrophys. J. Lett. 744, L3 (2012).

    ADS 
    Article 

    Google Scholar 

  • Nesvorný, D. Dynamical evolution of the early Solar System. Ann. Rev. Astron. Astrophys. 56, 137–174 (2018).

    ADS 
    Article 

    Google Scholar 

  • Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011).

    ADS 
    Article 

    Google Scholar 

  • Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat. Astron. 2, 878–882 (2018).

    ADS 
    Article 

    Google Scholar 

  • Mojzsis, S. J., Brasser, R., Kelly, N. M., Abramov, O. & Werner, S. C. Onset of giant planet migration before 4480 million years ago. Astrophys. J. 881, 44 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Quarles, B. & Kaib, N. Instabilities in the early Solar System due to a self-gravitating disk. Astron. J. 157, 67 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • de Sousa, R. R. et al. Dynamical evidence for an early giant planet instability. Icarus 339, 113605 (2020).

    Article 

    Google Scholar 

  • Pierens, A., Raymond, S. N., Nesvorny, D. & Morbidelli, A. Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the Grand Tack and Nice models. Astrophys. J. Lett. 795, L11 (2014).

    ADS 
    Article 

    Google Scholar 

  • Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Ann. Rev. Astron. Astrophys. 49, 67–117 (2011).

    ADS 
    Article 

    Google Scholar 

  • Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Ann. Rev. Earth Planet. Sci. 45, 389–417 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, K. J. Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).

    ADS 
    Article 

    Google Scholar 

  • Alexander, R., Pascucci, I., Andrews, S., Armitage, P. & Cieza, L. in Protostars and Planets Vol. VI (eds. Beuther, H. et al.) 475–496 (Univ. Arizona Press, 2014).

  • Ercolano, B. & Pascucci, I. The dispersal of planet-forming discs: theory confronts observations. R. Soc. Open Sci. 4, 170114 (2017).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Masset, F. S., Morbidelli, A., Crida, A. & Ferreira, J. Disk surface density transitions as protoplanet traps. Astrophys. J. 642, 478–487 (2006).

    ADS 
    Article 

    Google Scholar 

  • Romanova, M. M. et al. 3D simulations of planet trapping at disc-cavity boundaries. Mon. Not. R. Astron. Soc. 485, 2666–2680 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Liu, B., Ormel, C. W. & Lin, D. N. C. Dynamical rearrangement of super-Earths during disk dispersal. I. Outline of the magnetospheric rebound model. Astron. Astrophys. 601, A15 (2017).

    ADS 
    Article 

    Google Scholar 

  • Liu, B. & Ormel, C. W. Dynamical rearrangement of super-Earths during disk dispersal. II. Assessment of the magnetospheric rebound model for planet formation scenarios. Astron. Astrophys. 606, A66 (2017).

    ADS 
    Article 

    Google Scholar 

  • Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J 144, 117 (2012).

    ADS 
    Article 

    Google Scholar 

  • Clement, M. et al. Born eccentric: constraints on Jupiter and Saturn’s pre-instability orbits. Icarus 355, 114–122 (2021).

    Article 

    Google Scholar 

  • Zellner, N. E. B. Cataclysm no more: new views on the timing and delivery of lunar impactors. Origins Life Evol. Biosphere 47, 261–280 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zahnle, K., Schenk, P., Levison, H. & Dones, L. Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003).

    ADS 
    Article 

    Google Scholar 

  • Singer, K. N. et al. Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science 363, 955–959 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Raymond, S. N., Izidoro, A. & Morbidelli, A. In Planetary Astrobiology (eds Meadows, V. et al.), 287–324 (Univ. Arizona Press, 2020).

  • Raymond, S. N., Armitage, P. J. & Gorelick, N. Planet-planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary systems. Astrophys. J. 711, 772–795 (2010).

    ADS 
    Article 

    Google Scholar 

  • Suzuki, D. et al. The exoplanet mass-ratio function from the MOA-II Survey: discovery of a break and likely peak at a Neptune mass. Astrophys. J. 833, 145 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Pu, B. & Wu, Y. Spacing of Kepler planets: sculpting by dynamical instability. Astrophys. J. 807, 44 (2017).

    ADS 

    Google Scholar 

  • Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 500, 33–51 (1973).

    ADS 

    Google Scholar 

  • Alexander, R. D., Clarke, C. J. & Pringle, J. E. Photoevaporation of protoplanetary discs – I. Hydrodynamic models. Mon. Not. R. Astron. Soc. 369, 216–228 (2006).

    ADS 
    Article 

    Google Scholar 

  • Owen, J. E., Ercolano, B. & Clarke, C. J. Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation. Mon. Not. R. Astron. Soc. 412, 13–25 (2011).

    ADS 
    Article 

    Google Scholar 

  • Haisch, J., Karl, E., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Astrophys. J. Lett. 553, L153–L156 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Luhman, K. L., Espaillat, C., Hartmann, L. & Calvet, N. The disk population of the Taurus star-forming region. Astrophys. J. Suppl. 186, 111–174 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Koepferl, C. M. et al. Disc clearing of young stellar objects: evidence for fast inside-out dispersal. Mon. Not. R. Astron. Soc. 428, 3327–3354 (2013).

    ADS 
    Article 

    Google Scholar 

  • Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).

    ADS 
    Article 

    Google Scholar 

  • Paardekooper, S. J., Baruteau, C., Crida, A. & Kley, W. A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag. Mon. Not. R. Astron. Soc. 401, 1950–1964 (2010).

    ADS 
    Article 

    Google Scholar 

  • Liu, B., Zhang, X., Lin, D. N. C. & Aarseth, S. J. Migration and growth of protoplanetary embryos. II. Emergence of proto-gas-giant cores versus super Earth progenitors. Astrophys. J. 798, 62 (2015).

    ADS 
    Article 

    Google Scholar 

  • Lin, D. N. C. & Papaloizou, J. On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. Astrophys. J. 309, 846 (1986).

    ADS 
    Article 

    Google Scholar 

  • Crida, A., Morbidelli, A. & Masset, F. On the width and shape of gaps in protoplanetary disks. Icarus 181, 587–604 (2006).

    ADS 
    Article 

    Google Scholar 

  • Fernandez, J. A. & Ip, W.-H. Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984).

    ADS 
    Article 

    Google Scholar 

  • Agnor, C. B. & Lin, N. C. On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J. 745, 143 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Kaib, N. A. & Chambers, J. E. The fragility of the terrestrial planets during a giant-planet instability. Mon. Not. R. Astron. Soc. 455, 3561–3569 (2016).

    ADS 
    Article 

    Google Scholar 

  • Aarseth, S. J. Gravitational N-Body Simulations (Cambridge Univ. Press, 2003).

  • Chambers, J. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    ADS 
    Article 

    Google Scholar 

  • Laskar, J. Large scale chaos and the spacing of the inner planets. Astron. Astrophys. 317, L75–L78 (1997).

    ADS 

    Google Scholar 

  • Chambers, J. E. Making more terrestrial planets. Icarus 152, 205–224 (2001).

    ADS 
    Article 

    Google Scholar 

  • Morbidelli, A., Brasser, R., Tsiganis, K., Gomes, R. & Levison, H. F. Constructing the secular architecture of the solar system. I. The giant planets. Astron. Astrophys. 507, 1041–1052 (2009).

    ADS 
    Article 

    Google Scholar 

  • Liu, B., Lambrechts, M., Johansen, A. & Liu, F. Super-Earth masses sculpted by pebble isolation around stars of different masses. Astron. Astrophys. 631, A7 (2019).

    Article 
    CAS 

    Google Scholar 

  • [ad_2]

    Source link

    Leave a Comment

    Your email address will not be published.

    %d bloggers like this: