[ad_1]
Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).
Google Scholar
Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F. & Gomes, R. Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007).
Google Scholar
Batygin, K., Brown, M. E. & Betts, H. Instability-driven dynamical evolution model of a primordially five-planet outer Solar System. Astrophys. J. Lett. 744, L3 (2012).
Google Scholar
Nesvorný, D. Dynamical evolution of the early Solar System. Ann. Rev. Astron. Astrophys. 56, 137–174 (2018).
Google Scholar
Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011).
Google Scholar
Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat. Astron. 2, 878–882 (2018).
Google Scholar
Mojzsis, S. J., Brasser, R., Kelly, N. M., Abramov, O. & Werner, S. C. Onset of giant planet migration before 4480 million years ago. Astrophys. J. 881, 44 (2019).
Google Scholar
Quarles, B. & Kaib, N. Instabilities in the early Solar System due to a self-gravitating disk. Astron. J. 157, 67 (2019).
Google Scholar
de Sousa, R. R. et al. Dynamical evidence for an early giant planet instability. Icarus 339, 113605 (2020).
Google Scholar
Pierens, A., Raymond, S. N., Nesvorny, D. & Morbidelli, A. Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the Grand Tack and Nice models. Astrophys. J. Lett. 795, L11 (2014).
Google Scholar
Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Ann. Rev. Astron. Astrophys. 49, 67–117 (2011).
Google Scholar
Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).
Google Scholar
Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Ann. Rev. Earth Planet. Sci. 45, 389–417 (2017).
Google Scholar
Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, K. J. Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).
Google Scholar
Alexander, R., Pascucci, I., Andrews, S., Armitage, P. & Cieza, L. in Protostars and Planets Vol. VI (eds. Beuther, H. et al.) 475–496 (Univ. Arizona Press, 2014).
Ercolano, B. & Pascucci, I. The dispersal of planet-forming discs: theory confronts observations. R. Soc. Open Sci. 4, 170114 (2017).
Google Scholar
Masset, F. S., Morbidelli, A., Crida, A. & Ferreira, J. Disk surface density transitions as protoplanet traps. Astrophys. J. 642, 478–487 (2006).
Google Scholar
Romanova, M. M. et al. 3D simulations of planet trapping at disc-cavity boundaries. Mon. Not. R. Astron. Soc. 485, 2666–2680 (2019).
Google Scholar
Liu, B., Ormel, C. W. & Lin, D. N. C. Dynamical rearrangement of super-Earths during disk dispersal. I. Outline of the magnetospheric rebound model. Astron. Astrophys. 601, A15 (2017).
Google Scholar
Liu, B. & Ormel, C. W. Dynamical rearrangement of super-Earths during disk dispersal. II. Assessment of the magnetospheric rebound model for planet formation scenarios. Astron. Astrophys. 606, A66 (2017).
Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).
Google Scholar
Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J 144, 117 (2012).
Google Scholar
Clement, M. et al. Born eccentric: constraints on Jupiter and Saturn’s pre-instability orbits. Icarus 355, 114–122 (2021).
Google Scholar
Zellner, N. E. B. Cataclysm no more: new views on the timing and delivery of lunar impactors. Origins Life Evol. Biosphere 47, 261–280 (2017).
Google Scholar
Zahnle, K., Schenk, P., Levison, H. & Dones, L. Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003).
Google Scholar
Singer, K. N. et al. Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science 363, 955–959 (2019).
Google Scholar
Raymond, S. N., Izidoro, A. & Morbidelli, A. In Planetary Astrobiology (eds Meadows, V. et al.), 287–324 (Univ. Arizona Press, 2020).
Raymond, S. N., Armitage, P. J. & Gorelick, N. Planet-planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary systems. Astrophys. J. 711, 772–795 (2010).
Google Scholar
Suzuki, D. et al. The exoplanet mass-ratio function from the MOA-II Survey: discovery of a break and likely peak at a Neptune mass. Astrophys. J. 833, 145 (2016).
Google Scholar
Pu, B. & Wu, Y. Spacing of Kepler planets: sculpting by dynamical instability. Astrophys. J. 807, 44 (2017).
Google Scholar
Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 500, 33–51 (1973).
Google Scholar
Alexander, R. D., Clarke, C. J. & Pringle, J. E. Photoevaporation of protoplanetary discs – I. Hydrodynamic models. Mon. Not. R. Astron. Soc. 369, 216–228 (2006).
Google Scholar
Owen, J. E., Ercolano, B. & Clarke, C. J. Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation. Mon. Not. R. Astron. Soc. 412, 13–25 (2011).
Google Scholar
Haisch, J., Karl, E., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Astrophys. J. Lett. 553, L153–L156 (2001).
Google Scholar
Luhman, K. L., Espaillat, C., Hartmann, L. & Calvet, N. The disk population of the Taurus star-forming region. Astrophys. J. Suppl. 186, 111–174 (2010).
Google Scholar
Koepferl, C. M. et al. Disc clearing of young stellar objects: evidence for fast inside-out dispersal. Mon. Not. R. Astron. Soc. 428, 3327–3354 (2013).
Google Scholar
Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).
Google Scholar
Paardekooper, S. J., Baruteau, C., Crida, A. & Kley, W. A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag. Mon. Not. R. Astron. Soc. 401, 1950–1964 (2010).
Google Scholar
Liu, B., Zhang, X., Lin, D. N. C. & Aarseth, S. J. Migration and growth of protoplanetary embryos. II. Emergence of proto-gas-giant cores versus super Earth progenitors. Astrophys. J. 798, 62 (2015).
Google Scholar
Lin, D. N. C. & Papaloizou, J. On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. Astrophys. J. 309, 846 (1986).
Google Scholar
Crida, A., Morbidelli, A. & Masset, F. On the width and shape of gaps in protoplanetary disks. Icarus 181, 587–604 (2006).
Google Scholar
Fernandez, J. A. & Ip, W.-H. Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984).
Google Scholar
Agnor, C. B. & Lin, N. C. On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J. 745, 143 (2012).
Google Scholar
Kaib, N. A. & Chambers, J. E. The fragility of the terrestrial planets during a giant-planet instability. Mon. Not. R. Astron. Soc. 455, 3561–3569 (2016).
Google Scholar
Aarseth, S. J. Gravitational N-Body Simulations (Cambridge Univ. Press, 2003).
Chambers, J. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).
Google Scholar
Laskar, J. Large scale chaos and the spacing of the inner planets. Astron. Astrophys. 317, L75–L78 (1997).
Google Scholar
Chambers, J. E. Making more terrestrial planets. Icarus 152, 205–224 (2001).
Google Scholar
Morbidelli, A., Brasser, R., Tsiganis, K., Gomes, R. & Levison, H. F. Constructing the secular architecture of the solar system. I. The giant planets. Astron. Astrophys. 507, 1041–1052 (2009).
Google Scholar
Liu, B., Lambrechts, M., Johansen, A. & Liu, F. Super-Earth masses sculpted by pebble isolation around stars of different masses. Astron. Astrophys. 631, A7 (2019).
Google Scholar
[ad_2]
Source link