[ad_1]
Sella, G. & Barton, N. H. Thinking about the evolution of complex traits in the era of genome-wide association studies. Annu. Rev. Genom. Hum. Genet. 20, 461–493 (2019).
Google Scholar
Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).
Google Scholar
Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).
Google Scholar
Insull, W. The pathology of atherosclerosis: Plaque development and plaque responses to medical treatment. Am. J. Med. 122, S3–S14 (2009).
Google Scholar
Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. U.S.A. 106, 9362–9367 (2009).
Google Scholar
Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: From association to function. Am. J. Hum. Genet. 102, 717–730 (2018).
Google Scholar
Lonsdale, J. et al. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
Google Scholar
Pérez-Enciso, M., Quevedo, J. R. & Bahamonde, A. Genetical genomics: Use all data. BMC Genom. 8, 69 (2007).
Google Scholar
Nica, A. C. et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 6, e1000895 (2010).
Google Scholar
Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: Annotation to enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010).
Google Scholar
Fransen, K. et al. Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn’s disease. Hum. Mol. Genet. 19, 3482–3488 (2010).
Google Scholar
Zhong, H. et al. Liver and adipose expression associated SNPs are enriched for association to type 2 diabetes. PLoS Genet. 6, e1000932 (2010).
Google Scholar
van der Sijde, M. R., Ng, A. & Fu, J. Systems genetics: From GWAS to disease pathways. Biochim. Biophys. Acta Mol. Basis Dis. 1842, 1903–1909 (2014).
Google Scholar
GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 348, 648–660 (2015).
Google Scholar
Hansen, B. G., Halkier, B. A. & Kliebenstein, D. J. Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci. 13, 72–77 (2008).
Google Scholar
Huang, Y.-F. et al. Expression QTL mapping in grapevine—Revisiting the genetic determinism of grape skin colour. Plant Sci. 207, 18–24 (2013).
Google Scholar
Drost, D. R. et al. Diversification in the genetic architecture of gene expression and transcriptional networks in organ differentiation of Populus. Proc. Natl. Acad. Sci. U.S.A. 107, 8492–8497 (2010).
Google Scholar
Huang, Y. et al. A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry. New Phytol. 201, 795–809 (2014).
Google Scholar
Kirst, M. et al. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol. 135, 2368–2378 (2004).
Google Scholar
Kirst, M., Basten, C. J., Myburg, A. A., Zeng, Z.-B. & Sederoff, R. R. Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid. Genetics 169, 2295–2303 (2005).
Google Scholar
Magris, G. et al. Genetic, epigenetic and genomic effects on variation of gene expression among grape varieties. Plant J. 99, 895–909 (2019).
Google Scholar
Street, N. R. et al. The genetics and genomics of the drought response in Populus. Plant J. 48, 321–341 (2006).
Google Scholar
Wierzbicki, M. P. et al. A systems genetics analysis in Eucalyptus reveals coordination of metabolic pathways associated with xylan modification in wood-forming tissues. New Phytol. 223, 1952–1972 (2019).
Google Scholar
Coombe, B. G. Growth stages of the grapevine: Adoption of a system for identifying grapevine growth stages. Aust. J. Grape Wine Res. 1, 104–110 (1995).
Google Scholar
Delfino, P., Zenoni, S., Imanifard, Z., Tornielli, G. B. & Bellin, D. Selection of candidate genes controlling veraison time in grapevine through integration of meta-QTL and transcriptomic data. BMC Genom. 20, 1–19 (2019).
Google Scholar
Tonutti, P. & Bonghi, C. Biochemistry and physiology of dehydrating berries. in Sweet, Reinforced and Fortified Wines 77–90 (Wiley, 2013).
Massonnet, M. et al. Ripening transcriptomic program in red and white grapevine varieties correlates with berry skin anthocyanin accumulation. Plant Physiol. 174, 2376–2396 (2017).
Google Scholar
Canaguier, A. et al. A new version of the grapevine reference genome assembly (12X. v2) and of its annotation (VCost. v3). Genom. Data 14, 56 (2017).
Google Scholar
The UniProt Consortium. Nucleic Acids ResUniProt: The universal protein knowledgebase. Nucleic Acids Res. 46, 2699 (2018).
Google Scholar
Dennis, G. et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4, 1–11 (2003).
Google Scholar
Mudge, J. M. & Harrow, J. The state of play in higher eukaryote gene annotation. Nat. Rev. Genet. 17, 758–772 (2016).
Google Scholar
Lijavetzky, D., Cabezas, J. A., Ibáñez, A., Rodríguez, V. & Martínez-Zapater, J. M. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genom. 8, 424 (2007).
Google Scholar
Myles, S. et al. Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. U.S.A. 108, 3530–3535 (2011).
Google Scholar
Nicolas, S. D. et al. Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L.) diversity panel newly designed for association studies. BMC Plant Biol. 16, 1–19 (2016).
Google Scholar
Benner, C. et al. FINEMAP: Efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).
Google Scholar
Liu, L. et al. TreeMap: A structured approach to fine mapping of eQTL variants. Bioinformatics 37, 1125–1134 (2021).
Google Scholar
Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).
Google Scholar
Fortes, A. M. et al. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol. 11, 1–35 (2011).
Google Scholar
Degu, A., Ayenew, B., Cramer, G. R. & Fait, A. Polyphenolic responses of grapevine berries to light, temperature, oxidative stress, abscisic acid and jasmonic acid show specific developmental-dependent degrees of metabolic resilience to perturbation. Food Chem. 212, 828–836 (2016).
Google Scholar
Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M. & Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 11, 1–14 (2011).
Google Scholar
Davies, C., Boss, P. K. & Robinson, S. P. Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol. 115, 1155–1161 (1997).
Google Scholar
Pattison, R. J., Csukasi, F. & Catalá, C. Mechanisms regulating auxin action during fruit development. Physiol. Plant. 151, 62–72 (2014).
Google Scholar
Bernier, F. & Berna, A. Germins and germin-like proteins: Plant do-all proteins. But what do they do exactly?. Plant Physiol. Biochem. 39, 545–554 (2001).
Google Scholar
El-Sharkawy, I., Mila, I., Bouzayen, M. & Jayasankar, S. Regulation of two germin-like protein genes during plum fruit development. J. Exp. Bot. 61, 1761–1770 (2010).
Google Scholar
Muñoz-Bertomeu, J., Miedes, E. & Lorences, E. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. J. Plant Physiol. 170, 1194–1201 (2013).
Google Scholar
Saladié, M., Rose, J. K., Cosgrove, D. J. & Catalá, C. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J. 47, 282–295 (2006).
Google Scholar
Navarro-Payá, D. et al. The grape gene reference catalogue as a standard resource for gene selection and genetic improvement. Front. Plant Sci. 12, 803977 (2022).
Google Scholar
Holton, T. A., Brugliera, F. & Tanaka, Y. Cloning and expression of flavonol synthase from Petunia hybrida. Plant J. 4, 1003–1010 (1993).
Google Scholar
Fujita, A., Goto-Yamamoto, N., Aramaki, I. & Hashizume, K. Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Biosci. Biotechnol. Biochem. 70, 632–638 (2006).
Google Scholar
Dunlevy, J., Kalua, C., Keyzers, R. & Boss, P. The production of flavour and aroma compounds in grape berries. in Grapevine Molecular Physiology and Biotechnology 293–340 (Springer, 2009).
Dimas, A. S. et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 1246–1250 (2009).
Google Scholar
Dal Santo, S. et al. Grapevine field experiments reveal the contribution of genotype, the influence of environment and the effect of their interaction (G×E) on the berry transcriptome. Plant J. 93, 1143–1159 (2018).
Google Scholar
Tantau T. The TikZ and PGF Packages. Manual for version 3.1.5b. Jan. 8, 2020. https://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf. (2020).
Joshi, N. & Fass, J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software] (2011).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Google Scholar
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Google Scholar
Picard Toolkit. Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/; Broad Institute (2018).
Zhang, C., Dong, S.-S., Xu, J.-Y., He, W.-M. & Yang, T.-L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
Google Scholar
Anders, S., Pyl, P. T. & Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Google Scholar
Shabalin, A. A. Matrix eQTL: Ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).
Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. 57, 289–300 (1995).
Google Scholar
Knaus, B. J. & Grünwald, N. J. vcfr: A package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).
Google Scholar
Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 18, 2938–2940 (2017).
Google Scholar
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).
Google Scholar
[ad_2]
Source link